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Abstract

A novel fluorescent dye labeled H-shaped block copolymer, (PMMA-Fluor-PS)2-PEO-(PS-Fluor-PMMA)2, is synthesized by the combina-
tion of atom transfer radical polymerization (ATRP) and anionic polymerization (AP). To obtain the designated structure of the copolymer,
a macroinitiator, 2,2-dichloro acetyl-PEO-2,2-dichloro acetyl (DCA-PEO-DCA), was prepared from DCAC and poly(ethylene oxide). The
copolymer was characterized by 1H NMR, GPC and fluorescence spectroscopy.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymers with well-designed structures are generally pre-
pared by controlled polymerization methods [1e4], which
can yield polymers with precisely defined molecular weight,
polydispersity, and terminal functionalities. These methods in-
clude: living anionic polymerization (AP) [2,5], atom transfer
radical polymerization (ATRP) [1,6], nitroxide-mediated poly-
merization (NMP) [3], reversible addition-fragmentation chain
transfer (RAFT) [7], and combinations of these methods
[8e10]. Star-shaped polymers are interesting macromolecules
due to their spatial architectural shapes, and those have been
synthesized by several methods, which include living poly-
merization with a multifunctional initiator [11,12], coupling
of living linear polymers with a multifunctional coupling
agent (terminator) [13,20], and the linking of living linear
polymers by reaction with difunctional or multifunctional
vinyl compounds [14] via microgel formation. Controlled
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polymerization is a versatile effective method to synthesizing
complex polymers with interesting properties [15].

Functionalized multiarm block copolymers have been stud-
ied extensively because of their interesting behaviors [16,17],
like microphase separation in different states to the bulk behav-
ior, phase structures, and morphologies. This understanding in-
spires us to design an H-shaped copolymer labeled fluorescent
dyes, (PMMA-Fluor-PS)2-PEO-(PS-Fluor-PMMA)2, and to
study its properties. The fluorescent dyes behave like the direct
nonradiative energy transfer (DET) [18] between donors and ac-
ceptors in an efficient way to the interface of the incompatible
polymers. Recently, the H-shaped copolymers, (PS)2-PEO-
(PS)2, have been successfully synthesized by Hadjichristidis’
groups, Hizal’s groups and Pan’s groups et al. [19], and an asym-
metric H-shaped block copolymer, (PS)2-PEO-(PMMA)2, and
a double H-shaped amphiphilic block copolymer, (PMMA)2-
PEO-(PS)2-PEO-(PMMA)2, has been successfully synthesized
by Yu et al. [21]. Anionic polymerization is the most effective
method to make a labeled polymer, and ATRP provides a very
easy approach to obtain complex H-shaped polymers with
well-defined molecular weight and low polydispersity. Combi-
nations of AP with other polymerization methods have created
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a new horizon for the synthesis of more predictable macromo-
lecular architecture and more complex polymers.

2. Experimental section

2.1. Materials

2,2-Dichloro acetyl chloride (DCAC, 99%) was used as
received without further purification. 2,20-Bipyridine (bPy,
99.9%) was recrystallized from n-hexane and stored in dark
under argon. Cuprous chloride (99%) was washed with acetic
acid till colorless, and then washed with methanol, dried under
vacuum at 40 �C for 24 h and stored in dark under argon. All
materials above purchased from the China Medicine Group,
Shanghai Chemical Reagent Co. Styrene (Beijing Chemical
Factory, 99.5%) and methyl methacrylate (Beijing Chemical
Factory, 99.5%) were washed with 5% sodium hydroxide
aqueous solution for three times, followed by water washes
to neutrality, and then dried with anhydrous magnesium sul-
fate overnight and calcium hydroxide for 72 h. The monomers
were distilled under reduced pressure to sealed ampules and
stored in a refrigerator prior to use. Anthracene (Beijing
Chemical Factory, 98%) and 9-bromophenanthrene (Aldrich,
99%) were used without further purification. THF (99.5%)
and n-hexane (99.5%) were refluxed and distilled over sodium
benzophenone to a purple color. Triethylaluminium (Aldrich,
99%) was diluted with n-hexane to 2% (v/v) and sealed in am-
pules prior to use. Poly(ethylene oxide) (Mn¼ 20,000 g/mol,
PDI¼ 1.06, The Shanghai First Chemical Reagent Co.) was
freed of water by azeotropic distillation using benzene. Anionic
polymerizations were carried out under argon atmosphere in
a flame-dried glass reactor equipped with a vacuum line; the
solvent, initiator, and monomer were transferred to the reactor
through stainless steel cannula or a syringe. ATRP polymeriza-
tions were carried out in a tube that was degassed by three or
more freezeevacuumethaw cycles. The tube was sealed under
vacuum and then immersed into an oil bath at 130 �C.

2.2. Instrumentation

1H NMR spectra were obtained on a Bruker AV-600 NMR
spectrometer using CDCl3 as the solvent and TMS as the inter-
nal standard. The molecular weights and the polydispersity of
the polymers were determined on a Waters 410 GPC equipped
with Waters Styragel HT6E column and Waters RI detector at
35 �C, which was calibrated with PL EasiCal PS-1 standards.
THF was used as an eluent with a flow rate of 1.0 mL/min.
The fluorescence spectra were produced on a Shimadzu RF-
5301 PC Spectrofluorophotometer. The UVevis spectra were
produced on a Shimadzu UV-2450 Spectrofluorophotometer.

2.3. Synthesis of 1-(9-phenanthryl)-1-phenylethylene and
1-(2-anthryl)-1-phenylrthylene

The fluorescent dye molecule, 1-(9-phenanthryl)-1-phenyl-
ethylene (PPE) and 1-(2-anthryl)-1-phenylrthylene (APE), was
synthesized and purified following a procedure reported in
the literature [18a,20]. 1H NMR d (ppm): PPE, 8.73e7.21
[aromatic, 14H], 6.02 []CH2, 1H], 5.49 []CH2, 1H] and
APE, 8.39e7.35 [aromatic, 14H], 5.67 []CH2, 1H], 5.56
[]CH2, 1H].

2.4. Synthesis of macroinitiator: 2,2-dichloro acetate-
PEO-2,2-dichloro acetate (DCA-PEO-DCA)

40.0 g PEO (Mn¼ 20,000 g/mol, PDI¼ 1.06, 2 mmol),
140 mL of anhydrous methylene chloride, and 7.9 g
(100 mmol) of anhydrous pyridine were added into a 250 mL
dry three-necked flask equipped with a refluxing condenser
and a constant pressure dropping funnel under argon atmo-
sphere. When the PEO was dissolved completely, the flask
was cooled into an ice-water bath, and then 14.6 g of
(100 mmol) 2,2-dichloro acetyl chloride was transferred to
the constant pressure dropping funnel under argon atmosphere
and added dropwise into the flask over a period of 1 h. The re-
action mixture was warmed and kept at room temperature for
additional 3 h at least, and refluxed for 12 h. The mixture was
filtered to remove the C5H5NHþCl�, and the filtrate was passed
through a 10 cm neutral alumina chromatography column
(length diameter ratio, 10:1 cm) at least three times. The
resulted solution was precipitated into 300 mL of anhydrous di-
ethyl ether, and filtered. The product obtained was dried under
vacuum at 50 �C for 24 h. The yield of the macroinitiator, DCA-
PEO-DCA, was 83%. 1H NMR d (ppm): 6.01 [Cl2HCCOe,
1H], 4.43 [eCOOCH2CH2e, 2H], 3.63 [eOCH2CH2Oe,
900H]. Mn,NMR¼ 20,000 g/mol.

2.5. Synthesis of H-shaped block copolymers: (ClPS)2-
PEO-(PSCl)2

The procedure for synthesis of sample No. 1 (see Table 1)
is given here as an example. 0.40 g (0.02 mmol) of macroini-
tiator, DCA-PEO-DCA (Mn,NMR¼ 20,000 g/mol), 0.049 g
(0.50 mmol) of CuCl, 0.418 g (0.30 mmol) of bPy, 5.0 mL
of styrene, and 2.0 mL of THF were added into a 20 mL
polymerization tube which was degassed to remove oxygen
by three or more freezeevacuumethaw cycles. The tube
was sealed under vacuum and no leakage was detected. The
mixture was heated at 130 �C for 4 h. The resulted polymer
was dissolved in 20 mL methylene chloride and the solution
was passed through a 7 cm neutral alumina chromatography
column at least three times to remove the copper salt and
the bPy. The polymer solution was precipitated into 200 mL
petroleum ether (b.p. 30e60 �C), and the polymer was col-
lected by vacuum filtration. The solid product was dried
under vacuum at 50 �C for 24 h. Yield of the H-shaped
block copolymer, (ClPS)2-PEO-(PSCl)2, was 67%. 1H NMR
d (ppm): 6.45e7.08 [aromatic protons], 3.65 [eOCH2-
CH2Oe], 1.31e1.98 [methylene and methane protons].
Mn,NMR¼ 104,000 g/mol, Mn,GPC¼ 88,000, Mw/Mn¼ 1.12.
The data for other (ClPS)2-PEO-(PSCl)2 copolymers are
listed in Table 1.
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2.6. Synthesis of fluorescent labeled H-shaped block
copolymers: (PMMA-Fluor-PS)2-PEO-(PS-Fluor-
PMMA)2

The procedure for synthesis of sample No. 9 (PMMA-
Fluor-PS)2-PEO-(PS-Fluor-PMMA)2 block copolymer is
given here as an example. The other polymers are shown in
Table 2. 2.02 g (0.01 mmol) of macroinitiator, (ClPS)2-PEO-
(PSCl)2, No. 7 (Mn,NMR¼ 202,000 g/mol), 0.5 g of lithium,
and 3 mL of triethylaluminium solution (diluted by n-hexane
to 2% v/v) were transferred into a flame-dried Schlenk flask
with 28/15 spherical o-ring joint glass equipped with a high
vacuum line (10�4 Pa). The mixture was cooled to 5 �C, and

Table 1

Synthesis of H-shaped (PS1)2-PEO-(PS1)2 polymers by ATRP using DCA-

PEO-DCA as macroinitiatora

No. Sample Time (h) Mn,NMR
b Mn,GPC PDI

PEO 20,000 1.06

1c (PS1)2-PEO-(PS1)2 4 104,000 88,000 1.12

2 (PS2)2-PEO-(PS2)2 5 116,000 96,000 1.10

3 (PS3)2-PEO-(PS3)2 6 126,000 113,000 1.08

4 (PS4)2-PEO-(PS4)2 7 137,000 117,000 1.09

5 (PS5)2-PEO-(PS5)2 8 142,000 129,000 1.12

6 (PS6)2-PEO-(PS6)2 9 153,000 138,000 1.15

7c (PS7)2-PEO-(PS7)2 14 202,000 182,000 1.07

a All the polymers of (PS)2-PEO-(PS)2 were synthesized by the ATRP of

styrene in THF at 130 �C. The molar ratio of the DCA-PEO-DCA:CuCl:

bPy¼ 1:5:15, DCA-PEO-DCA (Mn,NMR¼ 20,000 g/mol, 0.4 g, 0.02 mmol),

styrene (5 mL), THF (2 mL, Nos. 1e6; 10 mL, No. 7). The Mn,NMR of macro-

initiator, DCA-PEO-DCA, can be calculated by Eq. (1)

Mn;NMR ¼ ½ðIc=4Þ
�
ðIa=2Þ� � 44:05þ 111:93� 2þ 16:00 ð1Þ

where the number 44.05 is the molar mass of the group eCH2OCH2e; the

number 111.93 is the molar mass of the group Cl2HCCOe; the number

16.00 is the atomic weight of oxygen; (Ic/4)/(Ia/2)¼ 450¼NPEO is the effec-

tive number of ethylene oxide repeat unit in the macroinitiator, DCA-PEO-

DCA (as determined by 1H NMR).
b The Mn,NMR of the obtained copolymer, (ClPS)2-PEO-(PSCl)2 was calcu-

lated by Eq. (2)

Mn;NMR ¼ ½ðIa þ Ia
0 Þ
�

5�
�
ðIb=4Þ �NPEO � 104:15þ 20;000 ð2Þ

where, Iaþ Ia0 is the integral of aromatic protons of benzene; Ib is the integral

of the chain segment of PEO protons; 104.15 is the molar mass of styrene,

20,000 is the Mn,NMR of DCA-PEO-DCA (for NPEO see the Eq. (1)).
c The ended polymers were prepared by the samples.
then THF (50.0 mL) was added to the Schlenk flask and was
allowed to react for 5 h. The mixture was cooled to �78 �C,
and then 5 mL (0.01 mol/L) of 1-(9-phenanthryl)-1-phenyl-
ethylene in THF was added into the flask. After 10 min,
MMA (0.76 g, 0.81 mL, 7.3 mmol) was added, and the reac-
tion was allowed to proceed for 3 h. The polymerization was
terminated by addition of 1 mL methanol. The polymer solu-
tion was warmed to room temperature and passed through
a neutral alumina column twice to remove the lithium salt
and then precipitated into 300 mL petroleum ether (b.p. 30e
60 �C). The solid product was dried under vacuum at 50 �C
for 24 h, and the designed H-shaped block copolymer,
(PMMA-Fluor-PS)2-PEO-(PS-Fluor-PMMA)2 was obtained. 1H
NMR d (ppm): 6.45e7.08 [aromatic protons], 3.65 [eOCH2-

CH2Oe], 3.60 [eOCH3], 1.31e1.98 [methylene and methane
protons], 0.834e1.02 [eCH3]. Mn,NMR¼ 278,000, Mn,GPC¼
258,000, Mw/Mn¼ 1.16.

3. Results and discussion

Scheme 1 shows the synthesis route for the designed
H-shaped block copolymers. The macroinitiator, DCA-PEO-
DCA, was synthesized by esterification between PEO and
DCAC catalyzed by pyridine. DCAC and pyridine form a
complex compound [Cl2CHCO]þ[C5H5NCl]� to accelerate
the esterification reaction. The 1H NMR spectrum of the
macroinitiator is shown in Fig. 1A. The chemical shifts and
the intensities of the respective peaks of the compound are:
6.01 [Cl2HCCO, 1H] Ia¼ 0.099; 4.43 [COOCH2, 2H], Ib¼
0.205; 3.63 [eOCH2CH2Oe, 900H], Ic¼ 89.114. Ia:Ib¼
0.483 z 1:2. The presence of the resonance peaks at 6.01
and 4.33 clearly indicates the formation of the macroinitiator.

The H-shaped block copolymer, (ClPS)2-PEO-(PSCl)2, was
synthesized by ATRP [21]. The characteristic parameters of
these copolymers are shown in Table 1. For example, the co-
polymer No. 7 was synthesized with 10 mL THF for 14 h. The
mixture becomes solid if no THF is added. At this stage the
reaction passes through a heterogeneous stage and PEO forms
the complex with the copper ion, and thus, affects the mea-
surement results of GPC. The resulted polymer was passed
through neutral alumina chromatography column to com-
pletely remove the copper salt. The 1H NMR spectrum of
Table 2

Synthesis of H-shaped (PMMA-Fluor-PS)2-PEO-(PS-Fluor-PMMA)2 polymers by APa

No. Sample Mn,th
b Mn,NMR

c Mn,GPC PDI

Mn,PEO Mn,PS Mn,PMMA

8 (PMMA1-b-PS1)2-PEO-(PS1-b-PMMA1)2 180,000 20,000 84,000 76,000 161,000 1.19

9 (PMMA1-b-PS7)2-PEO-(PS7-b-PMMA1)2 278,000 20,000 182,000 76,000 258,000 1.16

a All the polymers of (PMMA-b-PS)2-PEO-(PS-b-PMMA)2 were synthesized by (PS)2-PEO-(PS)2 that initiated the polymerization of MMA in THF at �78 �C.

The molar ratio of the (PMMA-b-PS)2-PEO-(PS-b-PMMA)2:dye¼ 1:5. Triethylaluminium solution (diluted by n-hexane to 2% v/v, 5 mL), THF (80 mL).
b Mn,th was calculated by the molar ratio of the polymer anion and MMA.
c The proportion of the PEO, PS and PMMA in Nos. 8 and 9 was calculated by the ratio of its integral in 1H NMR. The Mn,NMR of (PMMA-Fluor-PS)2-PEO-(PS-

Fluor-PMMA)2 is calculated by Eq. (3)

Mn;NMR ¼ ½ðIa þ Ia
0 Þ
�

5�
�
ðIb=4Þ �NPEO � 104:15þ ½ðIc=3Þ

�
ðIb=4Þ� �NPEO � 100:11þ 20;000 ð3Þ

where Ic is the integral of CH3Oe protons of the chain segment PMMA; 100.11 is the molar mass of an MMA unit; the other parameters have been defined previously.
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Scheme 1. The strategy of synthesis of the H-shaped (PMMA-Fluor-PS)2-PEO-(PS-Fluor-PMMA)2.
the polymer is shown in Fig. 1B. The peaks at 6.45e7.08 as-
signed to aromatic protons indicate the presence of PS blocks
in the copolymers. Therefore, the polymer we obtained is
a PS-b-PEO copolymer. 1H NMR d (ppm): 6.45e7.08 [aro-
matic protons], Iaþ Ia0 ¼ 1.272; 3.65 [eOCH2CH2Oe],
Ib¼ 0.710; 1.31e1.98 [methylene and methane protons],
Ic¼ 1.331, Ic0 ¼ 0.769. (Iaþ Ia0):(Icþ Ic0)¼ 1.651 z 5:3. The
degree of polymerization of styrene, m¼ [(Iaþ Ia0)/Ib� (4/
5)� NPEO]/4¼ 163 was confirmed by 1H NMR. The GPC
traces (Nos. 1, 7) for all the copolymers are mono-nodal,
Fig. 1. 1H NMR spectra of the macroinitiator and polymers. A. The 1H NMR spectrum of the macroinitiator 2,2-dichloro acetyl-PEO-2,2-dichloro acetyl. B. The
1H NMR spectrum of (PS)2-PEO-(PS)2. C. The 1H NMR spectrum of (PMMA-Fluor-PS)2-PEO-(PS-Fluor-PMMA)2.
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symmetrical and narrow, which indicate that the polymers
formed have same degree of polymerization in the PEO based
initiator participation in the ATRP of styrene. The molecular
weights determined by GPC are apparent values.

(ClPS)2-PEO-(PSCl)2 was used to synthesize the fluores-
cent labeled H-shaped block copolymer (PMMA-Fluor-PS)2-
PEO-(PS-Fluor-PMMA)2 by living AP. The PEO block in
the macroinitiator (ClPS)2-PEO-(PSCl)2 is very hydrophilic
and can associate with H2O by H-bonding, therefore extra cau-
tion has been taken to make the initiator anhydrous. The mac-
roinitiator was dissolved in freshly distilled anhydrous THF
and the 5% (w/w) solution of it was passed through a 10 cm
neutral alumina chromatography column (length diameter ra-
tio, 20 cm/2 cm) three times. The polymer was precipitated
into anhydrous n-hexane and collected by vacuum filtration.
The (ClPS)2-PEO-(PSCl)2 polymers were dried under vacuum
at 110 �C for 96 h before they were used as AP initiator. The
chain ends of the copolymer (ClPS)2-PEO-(PSCl)2 contain the
alpha-halogens which react with the lithium in THF to pro-
duce the polymeric anions. The addition of triethylaluminium
into the system before MMA anionic polymerization is only
additional in situ purification of the mixture, because the
PEO could complex with H2O with hydrogen bonding. The
anionic complex first reacts with 1-(2-anthryl)-1-phenylethyl-
ene or 1-(9-phenanthryl)-1-phenylethylene and finally pro-
duces dye anions at junctions. The dye anion further reacts
with MMA [22]. The dye anions cannot react with their own
dye molecules, and therefore only a single dye molecule is at-
tached to each active site. The molecular weight of copoly-
mers of (PMMA-Fluor-PS)2-PEO-(PS-Fluor-PMMA)2 are
listed in Table 2. The 1H NMR spectrum of the copolymer
is shown in Fig. 1C. 1H NMR d (ppm): 6.45e7.08 [aromatic
protons], Iaþ Ia0 ¼ 8.043; 3.65 [eOCH2CH2Oe], Ib¼ 4.921;
3.60 [eOCH3], Ic¼ 8.324; 1.31e1.98 [methylene and meth-
ane protons]; 0.83e1.02 [eCH3 protons], Idþ Id0 ¼ 7.854.
The results of 1H NMR confirmed that the copolymer consists
of PS, PEO, and PMMA blocks.

12 14 16 18 22 24 26 28 30

Elution Volume (mL)

PEO

1

7 89

Fig. 2. GPC traces of the PEO (PS)2-PEO-(PS)2 (Nos. 1, 7) and the (PMMA-

Fluor-PS)2-PEO-(PS-Fluor-PMMA)2 (Nos. 8, 9).
The GPC traces (Nos. 8, 9 in Fig. 2) of the block copoly-
mers resemble (ClPS)2-PEO-(PSCl)2. The metalehalogen ex-
change reaction is accompanied by coupling of alkylhalide
and alkyllithium leading to products with higher molar weight.
These chains could be ‘‘hidden’’ in the product of block copo-
lymerization and overlapped with block copolymers in GPC
eluograms from the GPC curves also. If there is significant
coupling of alkylhalide (or carbonyl groups of (Cl-PS)2-
PEO-(PS-Cl)2) and alkyllithium during the anionic production
and anionic polymerization, the GPC curve of block copoly-
mer should have a tail at lower molecular weight position at
least. The GPC curves in Fig. 2 (from No. 1 to No. 8 and
from No. 7 to No. 9) are single (mono-nodal) and symmetrical,
indicating that pure H-shaped block copolymer was obtained,
and also indicate that the chains are not ‘‘hidden’’ in product
of block copolymerization.

The fluorescence spectrum and the UVevis spectrum of
solution of sample No. 9 (Table 2) is compared with that of
1-(9-phenanthryl)-1-phenylethylene (PPE) solution and shown
in Figs. 3 and 4, respectively. The curves of PPE and fluoro-
labeled block copolymer both posses the emission peaks in
between 358 and 375 nm. The curves of PPE and fluorolabeled
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block copolymer both posses the absorption peak at 346, 338
and 330 nm. The fluorescent spectrum and the UVevis spec-
trum confirm the presence of fluorescent molecule in the main
chain of the H-shaped block copolymer, (PMMA-Fluor-PS)2-
PEO-(PS-Fluor-PMMA)2.

4. Conclusion

In this paper, a novel symmetric fluorescent labeled H-
shaped block copolymer (PMMA-Fluor-PS)2-PEO-(PS-Fluor-
PMMA)2 has been designed and successfully synthesized by
combination of ATRP and living AP. The macroinitiator
DCA-PEO-DCA was designed and synthesized, and then was
used to prepare the H-shaped block copolymer (PS)2-PEO-
(PS)2 by ATRP. The fluorescent dye labeled H-shaped block
copolymer, (PMMA-Fluor-PS)2-PEO-(PS-Fluor-PMMA)2, was
prepared by the combination of living AP from the block co-
polymer (PS)2-PEO-(PS)2. In conclusion, we can say that the
study of 1H NMR, GPC and fluorescence spectroscopy and
UVevis spectroscopy confirms the designed H-shaped block
copolymer.
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